
Trustworthy AI Systems

-- Generative Modeling (Part I)

Instructor: Guangjing Wang
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Last Lecture

• Semantic Segmentation

• Object Detection
• R-CNN series
• YOLO series

• Instance Segmentation
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This Lecture

• Generative Modeling

• Generative Adversarial Network
• DCGAN
• Conditional GAN
• CycleGAN

• Neural Style Transfer
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Generative Modeling
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Learn Data Distributions

• Minimizing some divergence metrics between the training data 
distribution, and the distribution that the model learns.

• Training models that maximize the expected log likelihood of 
   If I sample from the distribution and get a 

• high likelihood ➔ likely the sample came from the training distribution 
• low likelihood ➔ the sample probably didn’t come from the training distribution
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Why Generative Modeling?

• Realistic samples for artwork, super-resolution, colorization, etc. 
• Learn useful features for downstream tasks such as classification.
• Getting insights from high-dimensional data (physics, medical 

imaging, etc.) 
• Modeling physical world for simulation and planning (robotics and 

reinforcement learning applications) 
• Many more ...
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Generative Adversarial Network (GAN)
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• Two models are trained simultaneously by an adversarial process. 
• A generator ("the artist") learns to create images that look real
• A discriminator ("the art critic") learns to tell real images apart from fakes.



The idea of GAN
• During training, the generator progressively becomes better at creating images 

that look real, while the discriminator becomes better at telling them apart.

• The process reaches equilibrium when the discriminator can no longer 
distinguish real images from fakes.
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Deep Convolutional GAN (DCGAN)

• Generator: Upsampling layers (???) to produce an image from a 
seed (random noise)
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Deep Convolutional GAN (DCGAN)

• Discriminator: a classifier
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Deep Convolutional GAN (DCGAN)

• Loss function: optimization goal
• Discriminator loss: how well the discriminator is able to distinguish real 

images from fakes
• Generator loss: how well it was able to trick the discriminator
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Deep Convolutional GAN (DCGAN)
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Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

The GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo
Tricks to make GAN better: https://github.com/soumith/ganhacks 

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/soumith/ganhacks


Effect of DCGAN
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Start from: Random Noise Synthesized Image



Conditional GAN (cGAN)

• Pix2pix: Learns a mapping from input images to output images
• cGAN: Condition on input images and generate corresponding 

output images
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Conditional GAN (cGAN)

• Generator (UNet): an encoder (downsampler) and decoder (upsampler)
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https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.841297/full

We can set the size of 
layer 7 the same as input



Training of Generator
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Discriminator in cGAN

• Discriminator: a convolutional PatchGAN classifier—it tries to 
classify if each image patch is real or fake.

• The input image and the target image, which it should classify 
as real.

• The input image and the generated image (the output of the 
generator), which it should classify as fake.
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Train of Discriminator
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Effect of cGAN (Pixel2Pixel)
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• Pass images from the test set to the generator.

• The generator will then translate the input image into the 
output.

https://www.tensorflow.org/tutorials/generative/pix2pix

https://www.tensorflow.org/tutorials/generative/pix2pix


CycleGAN
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There are 2 generators (G and F) and 2 discriminators (X 
and Y) being trained here.



CycleGAN

• Pixel2Pixel needs paired training data.
• CycleGAN: unpaired training data.

• CycleGAN uses instance normalization instead of batch 
normalization.

• The CycleGAN paper uses a modified Resnet based Generator
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https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1703.10593


Loss Function in CycleGAN

• There is no pair data to train on, so cycle consistency loss is 
designed to enforce the network to learn meaningful mapping.

• Cycle consistency means the result should be close to the original 
input.

9/09/24 CIS6930 Trustworthy AI Systems 22



Feature Inversion
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Feature Inversion
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Potential privacy issues in deep learning



Neural Style Transfer

• A content image and a style reference image (such as an 
artwork by a famous painter)

• Blend them together so the output image looks like the content 
image, but “painted” in the style of the style reference image.

9/09/24 CIS6930 Trustworthy AI Systems 25

Content Image Style Image Synthesized Image



Content and Style Representations

• Use the intermediate layers of the model to get 
the content and style representations of the image.
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https://www.researchgate.net/figure/Visualization-of-example-
features-of-layers-1-10-20-30-40-and-49-of-a-deep_fig1_319622441



Content and Style Representations

• The content of an image is represented by the values of the 
intermediate feature maps.

• The style of an image can be described by the means and 
correlations across the different feature maps.
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Style Representation: Gram Matrix
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Ignore the positions of features and get 
correlations among features.



Style Representation: Gram Matrix
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The Gram Matrix takes the outer product of the feature vector with itself at 
each location and averaging that outer product over all locations.

Tensorflow Implementation
Pytorch Implementation



Neural Style Transfer
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Learning Objective: MSE loss
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Tensorflow Implementation Pytorch Implementation



Neural Style Transfer
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References
• https://cs231n.stanford.edu/slides/2024/lecture_11.pdf

• https://www.tensorflow.org/tutorials/generative/style_transfer

• https://pytorch.org/tutorials/advanced/neural_style_tutorial.html

• https://www.tensorflow.org/tutorials/generative/dcgan

• https://www.tensorflow.org/tutorials/generative/pix2pix

• https://www.tensorflow.org/tutorials/generative/cyclegan
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https://cs231n.stanford.edu/slides/2024/lecture_11.pdf
https://www.tensorflow.org/tutorials/generative/style_transfer
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/pix2pix
https://www.tensorflow.org/tutorials/generative/cyclegan
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