Trustworthy AI Systems

-- Generative Modeling (Part I)

Instructor: Guangjing Wang guangjingwang@usf.edu

Last Lecture

- Semantic Segmentation
- Object Detection
 - R-CNN series
 - YOLO series
- Instance Segmentation

This Lecture

- Generative Modeling
- Generative Adversarial Network
 - DCGAN
 - Conditional GAN
 - CycleGAN
- Neural Style Transfer

Generative Modeling

Given training data, generate new samples from same distribution

Objectives:

- 1. Learn $p_{model}(x)$ that approximates $p_{data}(x)$
- 2. Sampling new x from $p_{model}(x)$

Learn Data Distributions

- Minimizing some divergence metrics between the training data distribution, and the distribution that the model learns.
- Training models that maximize the expected log likelihood of $p_{\theta}(x)$ If I sample from the distribution and get a
 - high likelihood → likely the sample came from the training distribution
 - low likelihood → the sample probably didn't come from the training distribution

Why Generative Modeling?

- Realistic samples for artwork, super-resolution, colorization, etc.
- Learn useful features for downstream tasks such as classification.
- Getting insights from high-dimensional data (physics, medical imaging, etc.)
- Modeling physical world for simulation and planning (robotics and reinforcement learning applications)
- Many more ...

Generative Adversarial Network (GAN)

- Two models are trained simultaneously by an adversarial process.
 - A generator ("the artist") learns to create images that look real
 - A discriminator ("the art critic") learns to tell real images apart from fakes.

The idea of GAN

- During training, the generator progressively becomes better at creating images that look real, while the discriminator becomes better at telling them apart.
- The process reaches equilibrium when the *discriminator* can no longer distinguish real images from fakes.

Generator: Upsampling layers (???) to produce an image from a seed (random noise)

```
def make_generator_model():
   model = tf.keras.Sequential()
   model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
   model.add(layers.BatchNormalization())
   model.add(layers.LeakyReLU())
   model.add(layers.Reshape((7, 7, 256)))
   assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
   model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
   assert model.output_shape == (None, 7, 7, 128)
   model.add(layers.BatchNormalization())
   model.add(layers.LeakyReLU())
   model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
   assert model.output_shape == (None, 14, 14, 64)
   model.add(layers.BatchNormalization())
   model.add(layers.LeakyReLU())
   model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation=
   assert model.output_shape == (None, 28, 28, 1)
   return model
```

• Discriminator: a classifier

- Loss function: optimization goal
 - Discriminator loss: how well the discriminator is able to distinguish real images from fakes
 - Generator loss: how well it was able to trick the discriminator

```
def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss
def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)
```

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

The GAN Zoo: <u>https://github.com/hindupuravinash/the-gan-zoo</u> Tricks to make GAN better: <u>https://github.com/soumith/ganhacks</u>

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Effect of DCGAN

0378 1020 2570 8474

Start from: Random Noise

Synthesized Image

Conditional GAN (cGAN)

- Pix2pix: Learns a mapping from input images to output images
- cGAN: Condition on input images and generate corresponding output images

Conditional GAN (cGAN)

• Generator (UNet): an encoder (downsampler) and decoder (upsampler)

https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.841297/full

9/09/24

Gradients

Discriminator in cGAN

- Discriminator: a convolutional PatchGAN classifier—it tries to classify if each image *patch* is real or fake.
- The input image and the target image, which it should classify as real.
- The input image and the generated image (the output of the generator), which it should classify as fake.

Train of Discriminator

def discriminator_loss(disc_real_output, disc_generated_output):
 real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)

generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)

total_disc_loss = real_loss + generated_loss

return total_disc_loss

Effect of cGAN (Pixel2Pixel)

- Pass images from the test set to the generator.
- The generator will then translate the input image into the output.

https://www.tensorflow.org/tutorials/generative/pix2pix

CycleGAN

There are 2 generators (G and F) and 2 discriminators (X and Y) being trained here.

CycleGAN

- Pixel2Pixel needs paired training data.
- CycleGAN: unpaired training data.
- CycleGAN uses <u>instance normalization</u> instead of <u>batch</u> <u>normalization</u>.
- The <u>CycleGAN paper</u> uses a modified Resnet based Generator

Loss Function in CycleGAN

- There is no pair data to train on, so cycle consistency loss is designed to enforce the network to learn meaningful mapping.
- Cycle consistency means the result should be close to the original input.

Feature Inversion

Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- "looks natural" (image prior regularization)

$$\mathbf{x}^{*} = \underset{\mathbf{x} \in \mathbb{R}^{H \times W \times C}}{\operatorname{argmin}} \ell(\Phi(\mathbf{x}), \Phi_{0}) + \lambda \mathcal{R}(\mathbf{x})} \xrightarrow{\text{Given feature vector}} \\ \ell(\Phi(\mathbf{x}), \Phi_{0}) = \|\Phi(\mathbf{x}) - \Phi_{0}\|^{2} \\ \mathcal{R}_{V^{\beta}}(\mathbf{x}) = \sum_{i,j} \left((x_{i,j+1} - x_{ij})^{2} + (x_{i+1,j} - x_{ij})^{2} \right)^{\frac{\beta}{2}} \xrightarrow{\text{Total Variation regularizer}} \\ \text{Total Variation regularizer} \\ (\text{encourages spatial smoothness})$$

Feature Inversion

Potential privacy issues in deep learning

Neural Style Transfer

- A content image and a style reference image (such as an artwork by a famous painter)
- Blend them together so the output image looks like the content image, but "painted" in the style of the style reference image.

Content Image

Style Image

Synthesized Image

Content and Style Representations

• Use the intermediate layers of the model to get the *content* and *style* representations of the image.

https://www.researchgate.net/figure/Visualization-of-examplefeatures-of-layers-1-10-20-30-40-and-49-of-a-deep_fig1_319622441

Content and Style Representations

- The content of an image is represented by the values of the intermediate feature maps.
- The style of an image can be described by the means and correlations across the different feature maps.

Style Representation: Gram Matrix

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving **Gram matrix** of shape C x C

Efficient to compute; reshape features from

 $C \times H \times W$ to $=C \times HW$

then compute $G = FF^{T}$

Ignore the positions of features and get correlations among features.

Style Representation: Gram Matrix

The Gram Matrix takes the outer product of the feature vector with itself at each location and averaging that outer product over all locations.

```
def gram_matrix(input_tensor):
    result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_tensor)
    input_shape = tf.shape(input_tensor)
    num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
    return result/(num_locations)
```

Tensorflow Implementation

```
G_{cd}^{l} = \frac{\sum_{ij} F_{ijc}^{i}(x) F_{ijd}^{i}(x)}{IJ}
def gram_matrix(input):

a, b, c, d = input.size() # a=batch size(=1)

# b=number of feature maps

# (c,d)=dimensions of a f. map (N=c*d)

put_tensor, input_tensor)
features = input.view(a * b, c * d) # resize F_XL into \hat F_XL
```

G = torch.mm(features, features.t()) # compute the gram product

we 'normalize' the values of the gram matrix
by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)

Pytorch Implementation

Neural Style Transfer

- 1. Pretrain a CNN on ImageNet (VGG-19)
- Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape C_i × H_i × W_i
- 3. At each layer compute the *Gram matrix* giving outer product of features:

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$
 (shape C_i × C_i)

- 4. Initialize generated image from random noise
- 5. Pass generated image through CNN, compute Gram matrix on each layer
- 6. Compute loss: weighted sum of L2 distance between Gram matrices
- 7. Backprop to get gradient on image
- 8. Make gradient step on image
- 9. GOTO 5

1

Learning Objective: MSE loss

return loss

Tensorflow Implementation

```
@tf.function()
def train_step(image):
    with tf.GradientTape() as tape:
        outputs = extractor(image)
        loss = style_content_loss(outputs)
```

```
grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_0_1(image))
```

Pytorch Implementation

We want to optimize the input and not the model parameters so we # update all the requires_grad fields accordingly input_img.requires_grad_(True) # We also put the model in evaluation mode, so that specific layers # such as dropout or batch normalization layers behave correctly. model.eval() model.requires_grad_(False) optimizer = get_input_optimizer(input_img)

Neural Style Transfer

References

- <u>https://cs231n.stanford.edu/slides/2024/lecture_11.pdf</u>
- <u>https://www.tensorflow.org/tutorials/generative/style_transfer</u>
- <u>https://pytorch.org/tutorials/advanced/neural_style_tutorial.html</u>
- <u>https://www.tensorflow.org/tutorials/generative/dcgan</u>
- <u>https://www.tensorflow.org/tutorials/generative/pix2pix</u>
- <u>https://www.tensorflow.org/tutorials/generative/cyclegan</u>